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Abstract
We recast the “puzzle” computation of an equivariant Schubert

calculus structure constant as a “scattering amplitude”, computed from
a planar diagram (specifically, dual to the puzzles). Restrictions [Xw]|v
of equivariant Schubert classes can also be interpreted so, and we use
this formalism to give an easy proof of the puzzle rule. The key features
to check are the “Yang-Baxter” and “bootstrap” invariance under planar
isotopies, requiring the extra freedom of the planar diagrams.

Known solutions of the YBE for the groups A2, D4, E6 let us discover
and prove puzzle formulæ for KT of Grassmannian/”1-step” flag
manifolds (known from [Pechenik–Yong], [Wheeler–Zinn-Justin]), KT of 2-
step (new), and K of 3-step (new). Maulik–Okounkov create YBE solutions
(“R-matrices”) using quiver varieties, such as T∗(d-step flag manifolds);
we spell out the connection for d = 1.
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Equivariant Schubert classes on GLn/P and their restrictions.

Let G = GLn always, B± the upper/lower triangular matrices with intersection

T , and P ≥ B+ with Levi
∏d

i=0GL(ni). Then GLn/P is a d-step flag manifold
and we can index its B−-orbits by words λ with sort(λ) = 0n01n1 · · ·dnd.
Let Xλ be the corresponding orbit closure, and [Xλ] ∈ KT(GLn/P) its class in
T -equivariant K-theory. If λ = sort(λ) then Xλ = G/P, [Xλ] = 1.

We want formulæ for the cνλµ ∈ KT(pt) in the expansion [Xλ] [Xµ] =
∑

ν c
ν
λµ[Xν].

By Kirwan injectivity, it’s enough to prove [Xλ]|σ [Xµ]|σ =
∑

ν c
ν
λµ[Xν]|σ, an

equation in KT
∼= Z[e±y1, . . . , e±yn].

Theorem (AJS/Billey in HT ; Graham/Willems in KT .) Let Q be a reduced
expression for σ ∈ WP. Then [Xλ]|σ can be computed as a sum over subwords of
Q with Demazure/nil Hecke product (or 0-Hecke product, for H∗

T ) equal to λ.

If σ is 321-avoiding, then Q is unique up to (unimportant) commuting moves,
and its heap is a skew partition. These hold when d = 1 (“Grassmannian
permutations are 321-avoiding”), where Q is read from σ’s partition [Ikeda-
Naruse].
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Restrictions to fixed points, as scattering amplitudes.

Let Va be the vector space with basis ↓0, ↓1, . . . , ↓d, where a is a currently
mysterious parameter. Hence the Schubert classes on all d-step flag manifolds,
taken together, correspond to the tensor basis of

⊗n
i=1Vyi.

Define a very sparse matrix Ř : Va⊗Vb → Vb⊗Va by specifying only a few of its
(d+ 1)4 entries to be nonzero:

Ř =
∑

i

i i

i i
+
∑

i<j
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i j
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Then [Xλ]|σ is the (λ, sort(λ)) matrix entry in
∏

Q Ř ∈ End(
⊗n

i=1Vyi), expressed
diagramatically as follows:
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More general scattering amplitudes.

In the most general setup, we consider edge-colored directed graphs in a disc,
with some prescribed lists of colors and of allowed vertices (up to isotopy).
Each edge has a parameter, and the vertices may include restrictions on the
parameters.

To obtain a number (or rational function) from a graph, which we will call a
scattering amplitude, we need some more data:
• A vector space with basis for each color.

In Graham/Willems, the only color is the standard rep of Ad = SLd+1.
• A tensor in Hom(⊗incoming edges, ⊗outgoing edges) for each vertex type,
whose matrix entries are functions of the edge parameters.

In Graham/Willems, there is only one kind of vertex, and the in- and out-
going parameters must match up: a, b, a, b.
• For each boundary vertex, a chosen basis element in its vector space.

In Graham/Willems, the labels along the bottom are weakly increasing.

The key feature to look for: is the scattering amplitude invariant under isotopies
of the graph rel its intersection with the disc? (More about this soon.)
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Scattering amplitudes for puzzles: the vertices.

We focus on H∗
T and d = 1, where all the salient features are already visible.

There are three colors C
3, C3, and (C3)∗, irreps of SL3. (In fact they will extend

to irreps of Uq(sl3[t]), and the choice of extension involves a parameter.) In all
cases the bases are indexed by {0, 1, 10}.

Then we define three kinds of vertices, two trivalent (one rotated 180◦ with
arrows reversed), and a tetravalent:

=

0 0

0

+

1 1

1

+

1 0

10

+

10 1

0

+

0 10

1

=
0 1

1 0

(a− b)

On the tetravalent vertex, the parameters must pass through as before; on the
trivalent (except inside the tetravalent), all three parameters must match. In
both cases the element of Hom(⊗incoming edges, ⊗outgoing edges) will be
Uq(sl3[t])-equivariant. (The T -equivariance alone suffices to figure out which
basis vector corresponds to which of 0, 1, 10.)
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Scattering amplitudes for puzzles: the diagrams.

Theorem 1. [K-Tao ’03, restated]
cνλµ is the scattering amplitude of the diagram on the left.

2. (combined with [AJS/Billey])∑
ν c

ν
λµ[Xν]|σ is the scattering amplitude of the diagram on the right.

(Note that sort λ = sort µ = the identity class.)

λ µ

σ

sort           λ

λ µ

ν

So we’ve got the RHS of the equation we want to prove, as the scattering
amplitude of a single diagram. That suggests that we should manipulate it
to get the desired LHS, [Xλ]|σ [Xµ]|σ.
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Keys to the proof: The Yang-Baxter and bootstrap equations.

Proposition.
1. With any choice of orientations, colors, and boundary conditions, we have
the first two equations on scattering amplitudes, implying the third:

2. If a puzzle has the identity on the bottom, it must also have it on the NW and
NE sides, and have scattering amplitude = 1.

Hence

λ µ

σ

sort(   )       λ

sort(   )       λ

sort(   )       λ sort(   )       λ

σ σ

λ µ

σ σ

λ µ

so there’s our [Xλ]|σ [Xµ]|σ. Of course proposition #1 above is a big case check.
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Sources of solutions to the YBE and bootstrap equations.

Any minuscule representation Vω (i.e. all weights extremal) of a Lie algebra g

extends to its quantized loop algebra Uq(g[z
±]), but the extension Vω,c depends

on a choice of parameter c. Then as Drinfel ′d and Jimbo observed, the Schur’s-
lemma-unique (!) map Ř : Vω1,c⊗Vω2,d → Vω2,d⊗Vω1,c gives a solution to the
“trigonometric” YBE (meaning, entries depend only on c/d).

In order to have a trivalent vertex, we need Vω1,c⊗Vω2,d to become reducible
։ Vγ,e, which only happens at special c/d. For our Schubert situation, where
we know the ordinary-cohomology specialization should be Z3-symmetric, we
need Z3 = 〈τ〉 to act on g and its weight lattice with ω1 = τω2 = −τ2γ.

Theorem.
d = 2. The 8 puzzle edge labels 0, 1, 2, 10, 20, 21, 2(10), (21)0 now index bases of
the three minuscule representations C8, spin+, spin− of D4.
d = 3. The 27 labels, including Buch’s “three parenthesis rule” labels like
3(((32)1)0), now index bases of the minuscule representations C27,C27, (C27)∗.

These turn out to be easy to guess from the known/conjectured puzzle rules,
from two considerations: each puzzle piece/trivalent vertex should be TG-
equivariant (essentially Buch’s theory of “auras”), and (for minusculeness) the
T -weights associated to edge labels should have the same norm.
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Degenerating – or not – the standard Ř-matrices.

Already at d = 1 the Ř-matrix C
3
a⊗C

3
b → C

3
b⊗C

3
a has matrix entries we don’t

see in H∗ puzzles:
10 10

10

10
10 10

If we include only the first, we get K-theory
(Buch/Tao); only the second, we get K-theory in the dual basis [Wheeler–ZJ].

Theorem (foreshadowing) 1. If one includes both pieces (with factor +1 not
−1), the resulting puzzles compute the coproduct structure constants of CSM

classes under Gr(k, n)
∆→֒ Gr(k, n)×Gr(k, n).

2. If one gives those pieces independent weights α,β, the resulting algebra is
still commutative associative!

Interesting as those are, this says that the standard Ř-matrix is not quite
computing KT . To “fix” it we rescale various basis vectors by powers of q±,
and let q→ 0 (similar to, but not quite the same as, the crystal limit).

Theorem. For d = 1, 2 this works great and gets us KT puzzles.
For d = 3 certain matrix entries go to∞ as q→ 0, but we can suppress those by
first specializing to the nonequivariant case, which is why we only get K- (and
H-)puzzles, not KT (or HT ). To do K requires 151 new puzzle pieces.
For d = 4 we actually have a nice group E8 and three representations, e8 ⊕ C,
but alas, even nonequivariance doesn’t save q→ 0 this time.
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Cotangent bundles as quiver varieties.

An Ad quiver variety M(~h, ~w) is associated to two “dimension vectors”
(h1, . . . , hd), (w1, . . . , wd) ∈ N

d, and is a moduli space of representations of the
doubled quiver

C
h1 C

h2 · · · C
hd “framed vertices”

↑↓ ↑↓ ↑↓
C

w1 →
← C

w2 →
← · · · →

← C
wd “gauged vertices”

such that at each gauged vertex,
∑

(go out then in) = 0, plus some open

“stability” condition. We mod out by
∏

iGL(Cwd). Let M(~h) :=
∐

~wM(~h, ~w).

Theorems. (Nakajima) Usld+1 acts on Htop(M(~h)), making it V∑
i hiωi

,

and Htop(M(~h, ~w)) is the
∑

i hiωi −
∑

iwiαi weight space.

(Varagnolo) Uq(gld+1[y]) acts on H∗(M(~h)).

(Nakajima) Uq(gld+1[e
±y]) acts on K(M(~h)).

As modules, K(M(λ+ µ)) ∼= K(M(λ))⊗K(M(µ)).

If ~h = (n, 0, . . . , 0), then M(~h, ~w) ∼= T∗
∐

({partial flags in C
n with dims ~w).

This last is fun to check; consider powers of Cn → C
w1 → C

n vs. the images
C

wi → C
n, and one recognizes the Springer resolution.
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Maulik–Okounkov’s geometric Ř-matrices, and d = 1 puzzles.

[MO] dress up the natural map
∏

iM(λi)
⊕→ M(

∑
i λi) to a “stable envelope”

Lagrangian relation, giving a convolution in homology. (If all these spaces are
cotangent bundles, we can equivalently map the CSM classes on the base.)

In particular, if the λi are minuscule, then the LHS is points indexing the stable
basis of H∗

T×C×(M(
∑

i λi))[~
±], depending crucially on the order of summands.

If we change this order (say by a simple transposition), then the basis changes,
and this change of basis is the generic rational Ř-matrix!

The boundary labels of d = 1 puzzles are restricted to 0 or 1 not 10;
correspondingly the A2 quiver varieties involved reduce to A1 quiver varieties.
(N.B. The subspaces C2 ≤ C

3 on the three sides are Z3-related, not the same!)

Theorem. Consider these two Lagrangian relations relating quiver varieties,
the first a stable envelope and the second a symplectic reduction:

M

(

n

k 0

)

×M

(

n

n k

)

→M

(

2n

n+ k k

)

//
Id

Rad(Pn)

−→ M

(

n

k k

)

Then the puzzle scattering amplitudes using the generic Ř-matrix compute the
induced map on stable classes. In cohomology, they compute the product in the
basis {MOλ/[zero section]} of KT×C×(T∗Gr(k, n))⊗frac KT×C×(pt).
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