Schubert puzzles and R-matrices

Allen Knutson and Paul Zinn-Justin

November 9, 2017

Abstract

We recast the "puzzle" computation of an equivariant Schubert calculus structure constant as a "scattering amplitude", computed from a planar diagram (specifically, dual to the puzzles). Restrictions $[X_w]|_v$ of equivariant Schubert classes can also be interpreted so, and we use this formalism to give an easy proof of the puzzle rule. The key features to check are the "Yang-Baxter" and "bootstrap" invariance under planar isotopies, requiring the extra freedom of the planar diagrams.

Known solutions of the YBE for the groups A_2 , D_4 , E_6 let us **discover** and prove puzzle formulæ for K_T of Grassmannian/"1-step" flag manifolds (known from [Pechenik–Yong], [Wheeler–Zinn-Justin]), K_T of 2step (new), and K of 3-step (new). Maulik–Okounkov create YBE solutions ("R-matrices") using quiver varieties, such as T*(d-step flag manifolds); we spell out the connection for d = 1.

Equivariant Schubert classes on GL_n/P **and their restrictions.**

Let $G = GL_n$ always, B_{\pm} the upper/lower triangular matrices with intersection T, and $P \ge B_+$ with Levi $\prod_{i=0}^{d} GL(n_i)$. Then GL_n/P is a d-step flag manifold and we can index its B_- -orbits by words λ with sort $(\lambda) = 0^{n_0}1^{n_1} \cdots d^{n_d}$.

Let X_{λ} be the corresponding orbit closure, and $[X_{\lambda}] \in K_T(GL_n/P)$ its class in T-equivariant K-theory. If $\lambda = \text{sort}(\lambda)$ then $X_{\lambda} = G/P$, $[X_{\lambda}] = 1$.

We want formulæ for the $c_{\lambda\mu}^{\nu} \in K_{T}(pt)$ in the expansion $[X_{\lambda}][X_{\mu}] = \sum_{\nu} c_{\lambda\mu}^{\nu}[X_{\nu}]$. By Kirwan injectivity, it's enough to prove $[X_{\lambda}]|_{\sigma} [X_{\mu}]|_{\sigma} = \sum_{\nu} c_{\lambda\mu}^{\nu}[X_{\nu}]|_{\sigma}$, an equation in $K_{T} \cong \mathbb{Z}[e^{\pm y_{1}}, \ldots, e^{\pm y_{n}}]$.

Theorem (AJS/Billey in H_T; Graham/Willems in K_T.) Let Q be a reduced expression for $\sigma \in W^P$. Then $[X_{\lambda}]|_{\sigma}$ can be computed as a sum over subwords of Q with Demazure/nil Hecke product (or 0-Hecke product, for H^{*}_T) equal to λ .

If σ is 321-avoiding, then Q is unique up to (unimportant) commuting moves, and its heap is a skew partition. These hold when d = 1 ("Grassmannian permutations are 321-avoiding"), where Q is read from σ 's partition [Ikeda-Naruse].

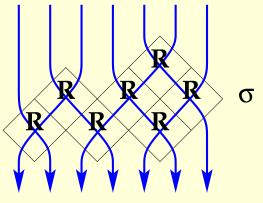
Restrictions to fixed points, as scattering amplitudes.

Let V_a be the vector space with basis $\emptyset, 1, ..., \emptyset$, where a is a currently mysterious parameter. Hence the Schubert classes on *all* d-step flag manifolds, taken together, correspond to the tensor basis of $\bigotimes_{i=1}^{n} V_{y_i}$.

Define a very sparse matrix $\check{R}: V_a \otimes V_b \to V_b \otimes V_a$ by specifying only a few of its $(d+1)^4$ entries to be nonzero:

$$\check{R} = \sum_{i \ i' \ i'}^{i' \ i'} + \sum_{i < j} \left(\begin{array}{c} i \\ j \\ i' \\ j' \end{array} + \begin{array}{c} e^{a-b} \\ j' \\ i' \end{array} + \begin{array}{c} (1 - e^{a-b}) \\ i' \\ j' \end{array} \right)$$

Then $[X_{\lambda}]|_{\sigma}$ is the $(\lambda, \operatorname{sort}(\lambda))$ matrix entry in $\prod_{Q} \check{R} \in \operatorname{End}(\bigotimes_{i=1}^{n} V_{y_i})$, expressed diagramatically as follows:



More general scattering amplitudes.

In the most general setup, we consider edge-colored directed graphs in a disc, with some prescribed lists of colors and of allowed vertices (up to isotopy). Each edge has a parameter, and the vertices may include restrictions on the parameters.

To obtain a number (or rational function) from a graph, which we will call a **scattering amplitude**, we need some more data:

• A vector space with basis for each color.

In Graham/Willems, the only color is the standard rep of $A_d = SL_{d+1}$.

• A tensor in Hom(\otimes incoming edges, \otimes outgoing edges) for each vertex type, whose matrix entries are functions of the edge parameters.

In Graham/Willems, there is only one kind of vertex, and the in- and outgoing parameters must match up: a, b, a, b.

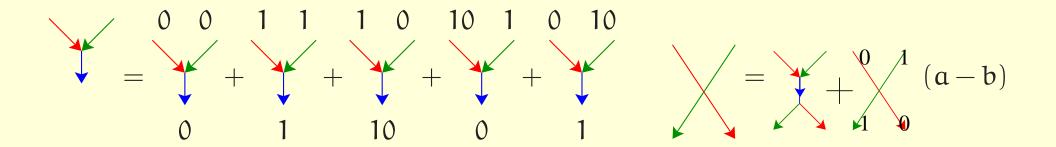
• For each boundary vertex, a chosen basis element in its vector space. In Graham/Willems, the labels along the bottom are weakly increasing.

The key feature to look for: is the scattering amplitude invariant under isotopies of the graph rel its intersection with the disc? (More about this soon.)

Scattering amplitudes for puzzles: the vertices.

We focus on H_T^* and d = 1, where all the salient features are already visible. There are three colors \mathbb{C}^3 , \mathbb{C}^3 , and $(\mathbb{C}^3)^*$, irreps of SL₃. (In fact they will extend to irreps of $U_q(\mathfrak{sl}_3[t])$, and the choice of extension involves a parameter.) In all cases the bases are indexed by {0, 1, 10}.

Then we define three kinds of vertices, two trivalent (one rotated 180° with arrows reversed), and a tetravalent:



On the tetravalent vertex, the parameters must pass through as before; on the trivalent (except inside the tetravalent), all three parameters must match. In both cases the element of Hom(\otimes incoming edges, \otimes outgoing edges) will be $U_q(\mathfrak{sl}_3[t])$ -equivariant. (The T-equivariance alone suffices to figure out which basis vector corresponds to which of 0, 1, 10.)

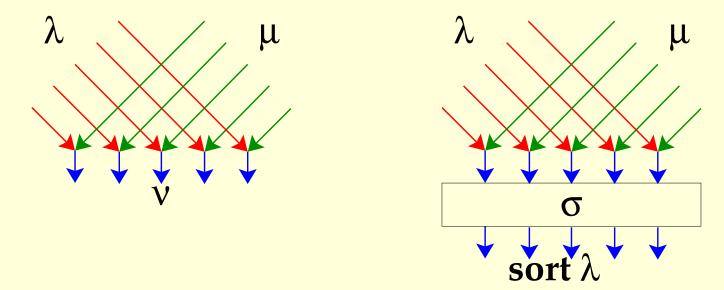
Scattering amplitudes for puzzles: the diagrams.

Theorem 1. [K-Tao '03, restated]

 $c_{\lambda\mu}^{\nu}$ is the scattering amplitude of the diagram on the left.

2. (combined with [AJS/Billey])

 $\sum_{\nu} c_{\lambda\mu}^{\nu}[X_{\nu}]|_{\sigma} \text{ is the scattering amplitude of the diagram on the right.}$ (Note that sort $\lambda = \text{sort } \mu = \text{the identity class.})$

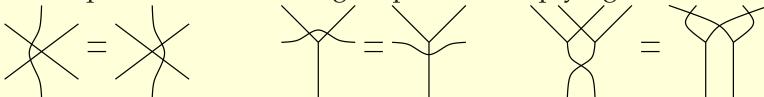


So we've got the RHS of the equation we want to prove, as the scattering amplitude of a single diagram. That suggests that we should manipulate it to get the desired LHS, $[X_{\lambda}]|_{\sigma} [X_{\mu}]|_{\sigma}$.

Keys to the proof: The Yang-Baxter and bootstrap equations.

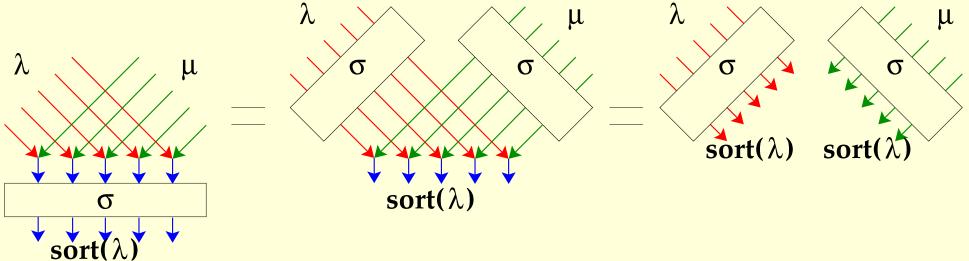
Proposition.

1. With any choice of orientations, colors, and boundary conditions, we have the first two equations on scattering amplitudes, implying the third:



2. If a puzzle has the identity on the bottom, it must also have it on the NW and NE sides, and have scattering amplitude = 1.

Hence



so there's our $[X_{\lambda}]|_{\sigma} [X_{\mu}]|_{\sigma}$. Of course proposition #1 above is a big case check.

Sources of solutions to the YBE and bootstrap equations.

Any minuscule representation V_{ω} (i.e. all weights extremal) of a Lie algebra \mathfrak{g} extends to its quantized loop algebra $U_q(\mathfrak{g}[z^{\pm}])$, but the extension $V_{\omega,c}$ depends on a choice of parameter c. Then as Drinfel'd and Jimbo observed, the Schur's-lemma-unique (!) map \check{R} : $V_{\omega_{1,c}} \otimes V_{\omega_{2,d}} \rightarrow V_{\omega_{2,d}} \otimes V_{\omega_{1,c}}$ gives a solution to the "trigonometric" YBE (meaning, entries depend only on c/d).

In order to have a trivalent vertex, we need $V_{\omega_1,c} \otimes V_{\omega_2,d}$ to become reducible $\rightarrow V_{\gamma,e}$, which only happens at special c/d. For our Schubert situation, where we know the ordinary-cohomology specialization should be Z₃-symmetric, we need $Z_3 = \langle \tau \rangle$ to act on g and its weight lattice with $\omega_1 = \tau \omega_2 = -\tau^2 \gamma$.

Theorem.

d = 2. The 8 puzzle edge labels 0, 1, 2, 10, 20, 21, 2(10), (21)0 now index bases of the three minuscule representations \mathbb{C}^8 , spin₊, spin₋ of D₄.

d = 3. The 27 labels, including Buch's "three parenthesis rule" labels like 3(((32)1)0), now index bases of the minuscule representations \mathbb{C}^{27} , \mathbb{C}^{27} , $(\mathbb{C}^{27})^*$.

These turn out to be easy to guess from the known/conjectured puzzle rules, from two considerations: each puzzle piece/trivalent vertex should be T_{G} -equivariant (essentially Buch's theory of "auras"), and (for minusculeness) the T-weights associated to edge labels should have the same norm.

Degenerating – or not – the standard Ř-matrices.

Already at d = 1 the Ř-matrix $\mathbb{C}^3_a \otimes \mathbb{C}^3_b \to \mathbb{C}^3_b \otimes \mathbb{C}^3_a$ has matrix entries we don't see in H* puzzles: $\overset{10}{10}$ $\overset{10}{10}$ If we include only the first, we get K-theory (Buch/Tao); only the second, we get K-theory in the dual basis [Wheeler–ZJ].

Theorem (foreshadowing) 1. If one includes *both* pieces (with factor +1 not -1), the resulting puzzles compute the *co*product structure constants of CSM classes under $Gr(k,n) \stackrel{\Delta}{\hookrightarrow} Gr(k,n) \times Gr(k,n)$.

2. If one gives those pieces independent weights α , β , the resulting algebra is still commutative associative!

Interesting as those are, this says that the standard \check{R} -matrix is not quite computing K_T . To "fix" it we rescale various basis vectors by powers of q^{\pm} , and let $q \rightarrow 0$ (similar to, but not quite the same as, the crystal limit).

Theorem. For d = 1, 2 this works great and gets us K_T puzzles.

For d = 3 certain matrix entries go to ∞ as q \rightarrow 0, but we can suppress those by first specializing to the nonequivariant case, which is why we only get K- (and H-)puzzles, not K_T (or H_T). To do K requires 151 new puzzle pieces.

For d = 4 we actually have a nice group E_8 and three representations, $\mathfrak{e}_8 \oplus \mathbb{C}$, but alas, even nonequivariance doesn't save q $\rightarrow 0$ this time.

Cotangent bundles as quiver varieties.

An A_d **quiver variety** $\mathcal{M}(\vec{h}, \vec{w})$ is associated to two "dimension vectors" $(h_1, \ldots, h_d), (w_1, \ldots, w_d) \in \mathbb{N}^d$, and is a moduli space of representations of the doubled quiver

\mathbb{C}^{h_1}		\mathbb{C}^{h_2}		• • •	\mathbb{C}^{h_d}	"framed vertices"
$\uparrow \downarrow$		$\uparrow \downarrow$			$\uparrow \downarrow$	
\mathbb{C}^{w_1}	\rightarrow \leftarrow	\mathbb{C}^{w_2}	\rightarrow \leftarrow	• • •	 \mathbb{C}^{w_d}	"gauged vertices"

such that at each gauged vertex, $\sum (\text{go out then in}) = 0$, plus some open "stability" condition. We mod out by $\prod_i GL(\mathbb{C}^{w_d})$. Let $\mathcal{M}(\vec{h}) := \coprod_{\vec{w}} \mathcal{M}(\vec{h}, \vec{w})$.

Theorems. (Nakajima) $U\mathfrak{sl}_{d+1}$ acts on $H_{top}(\mathcal{M}(\vec{h}))$, making it $V_{\sum_i h_i \omega_i}$, and $H_{top}(\mathcal{M}(\vec{h}, \vec{w}))$ is the $\sum_i h_i \omega_i - \sum_i w_i \alpha_i$ weight space. (Varagnolo) $U_q(\mathfrak{gl}_{d+1}[y])$ acts on $H_*(\mathcal{M}(\vec{h}))$. (Nakajima) $U_q(\mathfrak{gl}_{d+1}[e^{\pm y}])$ acts on $K(\mathcal{M}(\vec{h}))$. As modules, $K(\mathcal{M}(\lambda + \mu)) \cong K(\mathcal{M}(\lambda)) \otimes K(\mathcal{M}(\mu))$. If $\vec{h} = (n, 0, \dots, 0)$, then $\mathcal{M}(\vec{h}, \vec{w}) \cong T^* \coprod (\{\text{partial flags in } \mathbb{C}^n \text{ with dims } \vec{w})$. This last is fun to check; consider powers of $\mathbb{C}^n \to \mathbb{C}^{w_1} \to \mathbb{C}^n$ vs. the images $\mathbb{C}^{w_i} \to \mathbb{C}^n$, and one recognizes the Springer resolution.

Maulik–Okounkov's geometric \check{R} **-matrices, and** d = 1 **puzzles**.

[MO] dress up the natural map $\prod_i \mathcal{M}(\lambda_i) \xrightarrow{\oplus} \mathcal{M}(\sum_i \lambda_i)$ to a "stable envelope" Lagrangian relation, giving a convolution in homology. (If all these spaces are cotangent bundles, we can equivalently map the CSM classes on the base.)

In particular, if the λ_i are minuscule, then the LHS is points indexing the stable basis of $H^*_{T \times \mathbb{C}^{\times}}(\mathcal{M}(\sum_i \lambda_i))[\hbar^{\pm}]$, depending crucially on the order of summands. If we change this order (say by a simple transposition), then the basis changes, and this change of basis is the generic rational \mathring{R} -matrix!

The boundary labels of d = 1 puzzles are restricted to 0 or 1 not 10; correspondingly the A_2 quiver varieties involved reduce to A_1 quiver varieties. (*N.B.* The subspaces $\mathbb{C}^2 \leq \mathbb{C}^3$ on the three sides are Z₃-related, *not* the same!)

Theorem. Consider these two Lagrangian relations relating quiver varieties, the first a stable envelope and the second a symplectic reduction:

$$\mathcal{M}\begin{pmatrix}n\\k&0\end{pmatrix}\times\mathcal{M}\begin{pmatrix}n\\n&k\end{pmatrix}\to\mathcal{M}\begin{pmatrix}2n\\n+k&k\end{pmatrix}\xrightarrow{I_{d}}\mathcal{M}\begin{pmatrix}n\\k&k\end{pmatrix}$$

Then the puzzle scattering amplitudes using the generic R-matrix compute the induced map on stable classes. In cohomology, they compute the product in the basis $\{MO_{\lambda}/[\text{zero section}]\}$ of $K_{T \times \mathbb{C}^{\times}}(T^*Gr(k, n)) \otimes \operatorname{frac} K_{T \times \mathbb{C}^{\times}}(pt)$.