
SCHUBERT CALCULUS AND QUANTUM INFORMATION

ALLEN KNUTSON

ABSTRACT. These four lectures are for the “Workshop on QuantumMarginals and Density
Matrices” at the Fields Institute in Toronto, July 27-31, 2009.
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1. LECTURE 1: THE SCHUR-HORN THEOREM AND THE GEL ′FAND-CETLIN SYSTEM

Let V be a (finite-dimensional) complex vector space. For the purposes of these lectures,
we will always work with the concrete spaces C

n. A state S on V is an n × n Hermitian
matrix with (necessarily real) eigenvalues between 0 and 1, adding up to 1. If S has only
one nonzero eigenvalue (1), then S is a pure state, and otherwise it is a mixed state. We
will never make use of the conditions on the eigenvalues, so we will usually just talk
about Hermitian matrices.
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1.1. The Schur-Horn problem. The Schur-Horn problem is the following: if S has the
eigenvalues λ = (λ1 ≥ . . . ≥ λn), what could the vector (S11, S22, . . . , Snn) of (also nec-
essarily real) diagonal entries be? This is perhaps not an especially interesting problem,
but it is the easiest analogue of the problem that really interests us, which will appear in
the third and fourth lectures.

To see what shape the answer could take, let Oλ be the space of Hermitian matrices
with spectrum λ, and consider the maps

U(n) −→ Oλ
diag
−→ R

n

U 7→ UDλU
−1, S 7→ (S11, S22, . . . , Snn)

where Dλ is the diagonal matrix with entries λ, and U(n) is the group of unitary n × n

matrices.

This first map is onto – every matrix inOλ is diagonalizable (to Dλ) by a unitary matrix.
The unitary group is compact, meaning that it is closed (defined by equalities or weak
inequalities, no strict inequalities) and bounded (no matrix entry has |uij| > 1). It is also
connected. Consequently Oλ is compact and connected as well, as is its image under
diag. So we have a very partial answer to the Schur-Horn problem – given λ, the set of
possible diagonals is some compact, connected set in R

n.

Let us compose further with a linear projection R
n → R, i.e. S 7→ Tr(SDµ) where Dµ

is a diagonal matrix with entries (µ1, . . . , µn). Now we have a compact, connected set in
R – namely, a closed interval. (Put another way, a continuous real-valued function on a
compact set attains its maximum and minimum values.) It is pretty easy to guess that the
maximum is achieved when S is Dλ but with its entries permuted to be in the same order
as Dµ’s, and the minimum is achieved when the entries are permuted in the opposite
order.

Lemma. The critical points1 of the Rayleigh trace Oλ → R, S 7→ Tr(SDµ) are where S com-
mutes with Dµ, i.e. is block diagonal with blocks bounded by µ’s multiplicities.

This is pretty nearly a second-year calculus exercise.

Theorem (Schur’s half of the theorem). The set diag(Oλ) is contained in the convex hull
of the n! permutations of the vector λ. (All those points are obviously in diag(Oλ), since each
permutation of Dλ has the spectrum λ.)

Proof. Let Dµ have diagonal entries 0 or 1, giving 2n possibilities (though the all-0 or all-
1 cases are dull). Applying the theorem above, we learn that any k diagonal entries of S

have sum at most λ1+ . . .+λk, and at least λn−k+1+ . . .+λn. With some work one converts
this description of the facets into the given description of the vertices. �

Horn proved the converse: every point in the convex hull is attained, so the set diag(Oλ)
is determined by finitely many linear inequalities! We’ll see a reason later to expect this
sort of behavior.

1Meaning that first-order variations in S bring only second-order variations in Tr(SDµ). To move S by
some small amount t, let H be any fixed Hermitian matrix, so exp(itH) is a family of unitary matrices, and
look at exp(itH)S exp(−itH).
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1.2. Flag manifolds. It will be useful to have a more geometric understanding of the set
Oλ. If λ = (1, . . . , 1, 0, . . . , 0) with k 1s, then this is pretty easy; Oλ can be corresponded
with the space of k-dimensional subspaces of V , by S 7→ image(S). This is called the
Grassmannian Grk(V). The most familiar case is k = 1, where the Grassmannian is the
projective space of lines through the origin in V , identified with pure states on V .

One reason that the Grassmannian is a nicer description thanOλ is that while we know
how to apply unitary matrices to Oλ, we know how to apply arbitrary invertible matrices
to the Grassmannian (invertible transformations take k-planes to k-planes). In this sense
it’s a more symmetric description.

What if λ is general? Then for each k where λk > λk+1, we get a map Oλ → Grk(V).
Putting them together, we get a correspondence of Oλ with the set of increasing chains
(Vk1

< Vk2
< . . . < V) of subspaces, called (partial) flags. (If λ has no repeats, they are

called full flags.) Again, the full general linear group GL(n) of invertible matrices acts on
these “flag manifolds”.

1.3. The Bruhat decomposition. Given a smooth real-valued function f on a compact
manifold M (like Tr(•Dµ) on Oλ), we can study its gradient flow.2 Under long-term gra-
dient flow, almost every point in M falls down to the minimum value of f. But a few rare

unlucky points settle down at other critical points (meaning, where ∆f = ~0).

The first thing to determine, then, is the set of critical points. Say we’re lucky and there
are only finitely many such.3 A natural second step is to ask, given a critical point p ∈ M,
which points m fall into p under long-term gradient flow? Call this set Mp, so we have
the disjoint decomposition

M =
⋃

p

Mp, p ∈ {m : ∆f(m) = ~0}.

Take µ strictly decreasing (this will be to ensure that there are finitely many critical
points). The “pure states” case of projective space, λ = (1, 0, . . . , 0), is easy to analyze. As
in the lemma above, the critical points are the basis lines Lk = (0, . . . , 0, ∗ in kth spot, 0, . . . , 0).
Most lines C · ~v ≤ V will flow downhill to the minimum eigenline (for Dµ), namely Ln.
However, if L is contained in the subspace (∗, ∗, . . . , ∗, 0, . . . , 0) of V where the last k coordinates
are 0, then it will stay there during gradient flow. Hence

MLk
= {C · ~v : the last nonzero entry of ~v is the kth}.

Note that~v has some nonzero entry, sincewe’re just using it to generate some 1-dimensional
space in V . So we can rescale to get

MLk
= {C · ~v : the kth entry of ~v is 1, with 0s after}

letting us view it as a copy of C
k−1.

The next level of complexity is Oλ a k-Grassmannian, i.e. λ = (1k times, 0n−k times). The
critical points correspond to the

(

n

k

)

coordinate k-planes. To study a k-plane, we can pick a
basis for it, make those vectors the rows of a k × n matrix, and then row-reduce it to put
it in reduced row-echelon form; the result is then independent of the choice of basis.

2Technically, we need a metric on the manifold. There are a couple of natural choices, and they lead to
the same result, so we won’t detail this.

3If they’re isolated, then compactness implies there are only finitely many.
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Theorem. Let W ∈ Grk(C
n). Then under the gradient flow of the Rayleigh trace f : W 7→

Tr(DµπW), the point W flows down to the coordinate k-plane whose k coordinates correspond
to the columns of the k pivots in W’s reduced row-echelon matrix. (Here πW is the orthogonal
projection onto the subspace W.)

One can determine this k-element subset of {1, . . . , n} as follows: look at the subspaces

0 = (W ∩ 0) ≤ (W ∩ C
1) ≤ (W ∩ C

2) ≤ · · · ≤ (W ∩ C
n) = W

where C
i denotes the coordinate subspace {(∗, . . . , ∗, 0, . . . , 0)}, then compute their dimensions,

0 ≤ dim(W ∩ C
1) ≤ dim(W ∩ C

2) ≤ · · · ≤ dim(W ∩ C
n) = k.

These numbers jump by either 0 or 1, and jump by 1 exactly k times out of n. This gives the same
subset as the reduced row-echelon matrix calculation.

Note again that if we fix the locations of the pivots, the remaining freedom in the
reduced row-echelon matrix is just to choose some independent complex numbers. So
again, the decomposition is into a union of vector spaces.

It is interesting to note that any two such reduced row-echelon matrices with the same
pivots are related by left multiplication by lower unipotent matrices, meaning lower tri-
angular matrices with 1s on the diagonal. So this decomposition of the Grassmannian
comes as orbits of a subgroup of the general linear group (but not of the unitary group,
which it intersects trivially).4

Given a subset I ⊆ {1, . . . , n} of size k, define the Bruhat cell Grk(C
n)◦I to be the set of W

that flow down to the coordinate k-plane using the coordinates I, or equivalently, the set
of W whose reduced row-echelon matrices have pivots in columns I. Its closure (points
not necessarily in it, but reachable by taking limits) Grk(C

n)I is called a Schubert variety,
and is not usually smooth nearby the added points. The codimension (meaning, number
of degrees of freedom loft) of Grk(V)I is the number of pairs {(a, b) : a < b, a /∈ I, b ∈ I}.

Corollary (Hersch-Zwahlen 1962). If W ∈ Grk(C
n)I, and πW is the orthogonal projection onto

W, then Tr(πWDµ) ≥
∑

i∈I µi.

Proof. It is enough to prove it for W ∈ Grk(C
n)◦I, since weak inequalities continue to hold

in limits. As we follow gradient flow downward, the Rayleigh trace only decreases, until
it reaches its limiting value

∑
i∈I µi. �

The final case, of general λ, is not too bad because the flag manifold Oλ includes into a
product of Grassmannians

∏
k: λk>λk+1

Grk(V), and we can infer the gradient flow and the
Bruhat decompositions from there. Instead of coordinate subspaces indexed by subsets
of {1, . . . , n}, we have coordinate flags indexed by chains of subsets. If λ has all distinct
eigenvalues, so that Oλ is the manifold of full flags, then the maximal chains correspond
exactly to permutations of {1, . . . , n}. The analogue of picking a basis of the k-plane, and
to do row operations, is to build a basis of the whole space by gradually extending it to
larger subspaces in the flag, and only allow downward row operations. Then one must
remember both the columns and rows that the pivots appear in, which again is encoded
by a permutation.

4In the unitary setting, it is more natural to pick orthonormal bases of the k-planes, but then there is no
simple analogue of reduced row-echelon form.
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1.4. TheGel ′fand-Cetlin system. There is a refinement of the Schur-Horn problem: given
the spectrum λ of a Hermitian matrix S, what possible diagonals µ can occur, with what
probability density?

To answer this, we factor the map diag : Oλ→ R
n into

Oλ→ R(n
2) → R

n

where the first map takes

S 7→ (the ith eigenvalue of the upper left j × j square)i≤j

recorded as a triangle with j entries in the jth row, the bottom row containing the constant
λ. The second map takes the differences in the row sums (the traces).

Theorem. (1) (Weyl) The entries in row j are interspersed between those in row j + 1, for
j = 1, . . . , n − 1. These linear inequalities define Gel ′fand-Cetlin patterns (used in
representation theory).

(2) (Guillemin-Sternberg) These are the only conditions; every Gel ′fand-Cetlin pattern with λ

as its bottom row is in the image.
The U(n)-invariant measure on Oλ pushes forward to (a constant multiple of) Lebesgue
measure on the Gel ′fand-Cetlin polytope.

Hence the probability density of obtaining µ as the diagonal is given by the volume of
the polytope of Gel ′fand-Cetlin patterns with λ on the bottom, and µ as the differences of
the row sums (up to an unimportant global constant).

Note that the words “upper left” completely break the permutation-invariance that the
Schur-Horn question, and its answer, possess. For example, the Gel ′fand-Cetlin poly-
topes for µ and w · µ (for w a permutation in Sn) are usually not isomorphic, though they
have the same volume.

There’s a 1 : 1 correspondence between integral Gel ′fand-Cetlin patterns (with given
bottom row and row sums) and semistandard Young tableaux (with given shape and
content). It’s much easier to talk about the volume of a polytope of real GC patterns than
it is to give a definition of nonintegral semistandard Young tableaux, so I won’t really
focus on them.

2. LECTURE 2: THE WEYL-HORN PROBLEM AND SCHUBERT CALCULUS

We turn now to a richer problem, even older than the Schur-Horn problem, but only
wholly solved in the 1990s. In 1912 Weyl asked: given two Hermitian matrices Hλ and Hµ

with spectra λ and µ, what can the possible spectra ν be of their sum?

There are a couple of simple hints that this, like the Schur-Horn problem, might have
a polyhedral answer. One hint is that if Hλ is taken (without loss of generality) to be
diagonal, and λ’s eigenvalues are so spread apart that Hµ may be considered a tiny per-
turbation, then the spectrum of Hλ + Hµ is really determined by the diagonal entries of
Hµ. So in this limiting case, Weyl’s problem reduces5 to the Schur-Horn problem.

5Approximately. Or so it would seem; but in fact the corresponding Schur-Horn polytope gives exactly
the right answer whenever all λi − λi+1 are more than µ1 − µn.
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The other hint is that ν1 ≤ λ1+µ1. Proof: the largest eigenvalue of a HermitianmatrixH

is the maximum value of 〈H~v|~v〉 taken over unit vectors ~v (as discussed in the last lecture).
So

ν1 = max
~v

〈(Hλ + Hµ)~v|~v〉

= max
~v

(〈Hλ~v|~v〉 + 〈Hµ~v|~v〉)

= max
~v1,~v2 : ~v1=~v2

(〈Hλ~v1|~v1〉 + 〈Hµ~v2|~v2〉)

≤ max
~v1,~v2

(〈Hλ~v1|~v1〉 + 〈Hµ~v2|~v2〉)

= max
~v1

〈Hλ~v1|~v1〉 + max
~v2

〈Hµ~v2|~v2〉

= λ1 + µ1.

QED.

2.1. The Johnson/Klyachko/Helmke-Rosenthal/Totaro inequalities. We generalize this
latter argument in twoways. One is to go beyond 1-dimensional spaces to k-dimensional,
which leads to inequalities about sums of k eigenvalues from each of λ, µ, ν instead of just
one. But the much subtler ingredient is to maximize not over all subspaces, but just ones
in certain Schubert varieties.

Let Grk(V)H,I denote the Schubert variety in Grk(V) defined using the Rayleigh trace
Tr(•H), where H is no longer necessarily diagonal. This can be equally well described
by adding H’s eigenspaces for its j largest eigenvalues to obtain an increasing chain of
subspaces, then determine the Bruhat cell of W ∈ Grk(V) by fixing the jumps in the
dimension of the intersections of W with this chain. 6 The Hersch-Zwahlen theorem has
two analogues, for W ∈ Grk(V)H,I ∩ Grk(V)−H,J:

∑

i∈I

µi ≤ Tr(HπW) ≤
∑

j∈J

µn+1−j.

Theorem (Johnson 1979 (unpublished thesis), Klyachko ∼1993, Totaro 1994, Helmke-Rosen-
thal 1995). Let Hν = Hλ+Hµ, with spectrum ν. Let I, J, K be three k-element subsets of 1, . . . , n,
and assume that the intersection Grk(V)Hλ,I ∩ Grk(V)Hµ,J ∩ Grk(V)−Hν,K is nonempty. Then

∑

I

λi +
∑

J

µj ≤
∑

K

νn+1−k.

(Any similar inequality with ≥ can be turned into one of these, using the equality Tr(Hλ) +
Tr(Hµ) = Tr(Hν).)

Proof. Let W be a point in the intersection. Then

Tr((Hλ + Hµ)πW) = Tr(HνπW) = −Tr((−Hν)πW).

Using the Hersch-Zwahlen inequality, we get

Tr(HλπW) + Tr(HµπW) ≥
∑

I

λi +
∑

J

µj, Tr((−Hν)πW) ≥
∑

K

−νn+1−k.

6If H has repeated eigenvalues, perturb it to some H ′ commuting with H where H ′ has simple spectrum.
Only certain Schubert varieties will be independent of this choice. It’s a worrisome-looking annoyance but
doesn’t actually affect anything.
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(The eigenvalues of −Hν, in decreasing order, are −νn ≥ . . . − ν1, hence the n + 1 − k.)
Combining these, we get the desired inequality. �

Note that while the proof uses W, the statement only uses the existence of W. Many
partial results on Weyl’s problem were given by people who constructed explicit sub-
spaces W from the flags corresponding to Hλ, Hµ, Hν. For example, Weyl’s inequality
λi + µj ≥ νi+j−1 comes from adding λ’s i-plane, µ’s j-plane, and ν’s (n − i − j − 1)-plane,
and picking W to be a hyperplane containing that sum.

Horn studied the map Oλ × Oµ → R
n, taking (Hλ, Hµ) to the spectrum of their sum.

Away from the walls where ν has repeated eigenvalues, this map is smooth and one can do
multivariable calculus to determine its boundary. Horn used this to show that the image
is locally polyhedral, and that the inequalities all have the approximate form of the the-
orem above. He also gave in 1962 an explicit conjecture for a set of triples (I, J, K), that
Terry Tao and I proved in 1999.

2.2. Schubert calculus. The interesting bit about the theorem above is that one can often
guarantee that these Schubert varieties intersect for purely topological reasons. Think of two
circles drawn on the surface of a doughnut, one passing through the hole and the other
going around the outside. One can wiggle them around on the doughnut but they cannot
be thereby made to avoid one another.

Theorem (Kleiman 1973). Let I, J, K be three k-element subsets of 1, . . . , n, and let g1, g2, g3

vary over elements of GL(V). Then for almost all g1, g2, g3, the intersection (g1 ·Grk(V)I)∩ (g2 ·
Grk(V)J) ∩ (g3 · Grk(V)K) has the same dimension, and if finite, the same number of points.

Its codimension is the sum of the three codimensions.

Theorem. (1) (Horn 1962) It is enough to consider triples (I, J, K) such that this intersection
has finitely many points; the other Hersch-Zwahlen inequalities are implied by those. (This
occurs when the sum of the three codimensions is k(n − k).)

(2) (Klyachko ∼1993) These inequalities are not only necessary, but sufficient, for the existence
of a triple (Hλ, Hµ, Hν).

(3) (Belkale 1999) It is enough to consider triples (I, J, K) such that this intersection has ex-
actly one point.

(4) (Knutson-Tao-Woodward 2004) Belkale’s list is irredundant.
(5) (Bercovici et al. 2009) For each inequality on Belkale’s list, the subspace W can be con-

structed from the eigenspaces of Hλ, Hµ, Hν using sums and intersections.
(So Weyl’s technique would have found them all, eventually!)

The question of computing the number of points in these (generic) intersections is
called Schubert calculus on Grassmannians. Schubert’s calculus motivated the devel-
opment of “cohomology rings” of topological spaces; the Schubert varieties provide a
basis for the cohomology ring of the Grassmannian, and these intersection numbers are
then the coefficients in the multiplication.

Schubert’s calculus doesn’t let one calculate these positive numbers in a positive way.
Today there are many positive ways to calculate them, like the Littlewood-Richardson
rule; my favorite version is with the “puzzles” in [KnTao03].

Horn’s conjectured list of triples was specified in a very curious recursive manner, re-
ducing the study of Hermitian matrices of size n with arbitrary eigenvalues to the study
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of Hermitian matrices of each size k < n with integer eigenvalues. This has only received
a really satisfactory explanation more recently, in work of Belkale, Purbhoo, and Sottile.

Tao and I approached this problem by starting with the harder one – what is the proba-
bility measure on the space of ν? – which has a Gel ′fand-Cetlin-like answer due to Beren-
stein and Zelevinsky (1991), though was actually found first by Johnson (1979). Linear
programming arguments led us to the puzzles, and comparison with Klyachko’s theo-
rem suggested that the puzzles were actually computing Schubert calculus.

3. LECTURE 3: QUANTUM MARGINALS, AND THE BERENSTEIN-SJAMAAR/RESSAYRE

THEOREMS

The quantum marginals problem is the following: given a state HAB on A⊗B with
known spectrum, whose partial traces HA, HB are thus states on A,B, what can the pair of
spectra of the marginals HA, HB be?

I’ll first give a Helmke-Rosenthal-style family of inequalities. (As far as I know this
proof does not appear in the literature. Some discussion of the history will follow.)

Theorem 1. Let HA⊗B be a Hermitian operator on A⊗B, with marginals HA, HB. Assume that
there exist subspaces WA ≤ A, WB ≤ B of dimensions i, j, such that

(1) WA ∈ Gri(A)HA,I where I ⊆ {1, . . . , dim A}, |I| = i

(2) WB ∈ Grj(B)HB,J where J ⊆ {1, . . . , dim B}, |J| = j

(3) WA⊗WB ∈ Grij(A⊗B)−HAB,K where K ⊆ {1, . . . , dim A dim B}, |K| = ij

(4) (WA⊗B) + (A⊗WB) ∈ Gridim B+jdim A−ij(A⊗B)−HAB,L

where L ⊆ {1, . . . , dim A dim B}, |L| = i dim B + j dim A − ij.

(Since (WA⊗B) + (A⊗WB) ≥ WA⊗WB, it is automatic that L ⊇ K.)

Let εQ,p denote the pth largest eigenvalue of HQ. Then
∑

I

εA,i +
∑

J

εB,j ≤
∑

K

εAB,dim Adim B+1−k +
∑

L

εAB,dim Adim B+1−l

=

dim Adim B∑

m=1

εAB,dim Adim B+1−m






2 if m ∈ L

1 if m ∈ K, m /∈ L

0 if m /∈ K.

Proof.
∑

I

εA,i +
∑

J

εB,j ≤ TrA(HAπWA
) + TrB(HBπWB

)

= TrA⊗B(HAB(πWA
⊗1B)) + TrA⊗B(HAB(1A⊗πWB

))

= TrA⊗B(HAB(πWA
⊗1B + 1A⊗πWB

))

= TrA⊗B(HAB(πWA⊗B+A⊗WB
+ πA⊗B))

= TrA⊗B(HAB πWA⊗B+A⊗WB
) + TrA⊗B(HAB πA⊗B)

≤
∑

K

εAB,dim Adim B+1−k +
∑

L

εAB,dim Adim B+1−l

The other equality is obvious. �
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It is easy to generalize this to A1⊗ · · · ⊗Am, in which case the left side looks much the
same while the right side has coefficients between 1 and m.

Unfortunately, these are not all the conditions, but the others are all also linear inequal-
ities, described by Klyachko (2004) in the general case. We get some more using chains of
subspaces.

Theorem 2. Given chains of subspaces 0 < A1 < A2 < . . . < AdA
= A and 0 < B1 < B2 <

. . . < BdB
= B, we can define a chain 0 < C2 < . . . < CdA+dB

= A⊗B by Ck =
∑

i+j=k Ai⊗Bj,
of dimension ck =

∑
i+j≤k dim(Ai/Ai−1) dim(Bj/Bj−1).

Let HAB be a state on A⊗B, with marginals HA, HB. Assume there exist chains of subspaces
(Ai), (Bj) and chains of subsets (Pi=1,...,dA

⊆ {1, . . . , dim A}), (Qj=1,...,dB
⊆ {1, . . . , dim B}),

(Rk=1,...,dA+dB
) ⊆ {1, . . . , dim A dim B}), such that

• Ai ∈ Grai
(A)HA,Pi

where |Pi| = dim Ai

• Bj ∈ Grbj
(B)HB,Qj

where |Qi| = dim Bi

• Ck ∈ Grck
(A⊗B)−HAB,Rk

.

Then

dA∑

i=1

∑

p∈Pi

εA,p +

dB∑

j=1

∑

q∈Qj

εA,q ≤
dA+dB∑

k=2

∑

q∈Qk

εAB,dim Adim B+1−q

Proof. The proof is the same, starting from the equality
∑

i

(πAi
⊗1B) +

∑

j

(1A⊗πBj
) =
∑

k

πCk

instead of

πWA
⊗1B + 1A⊗πWB

= πWA⊗B+A⊗WB
+ πA⊗B

in the previous theorem. �

In the rest of this lecture we consider the question: what is the family of problems
that we expect to have such lovely, polyhedral solutions? This requires developing some
technology.

In the next lecture we take up the problem of determining when these magic subspaces
W exist. (Unfortunately, there is in general no known analogue of the puzzles we had in
the Horn problem.)

3.1. Coadjoint orbits of Lie groups. Let G be a “compact connected Lie group”, which
you may think of a set of unitary matrices, closed under multiplication or taking limits,
all connected to the identity. Then G acts on itself by conjugation, holding the identity
1 ∈ G in place. Therefore G acts on its “Lie algebra” g := T1G, and also on the dual vector
space g∗. We can also use a G-invariant metric7 to identify g with g∗, which is convenient
since g is easier to comprehend. (But g∗ will be more natural for our application to come.)

7since G is compact, so we can do integrals over it and get finite numbers; in particular we can average
any randomly chosen metric to get a G-invariant one
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For example, if G is actually U(n), then the Lie algebra is

g = {M : (1 + εM) satisfies U(n)’s equation to first order}

= {M : (1 + εM)(1 + εM)∗ = 1 + O(ε2)}

= {M : M + M∗ = 0}

AKA skew-Hermitian matrices. We’ll identify its dual with Hermitian matrices using the
form 〈H|S〉 := iTr(HS).

Under this identification, the coadjoint action of G on g∗ is just the usual one of conju-
gating Hermitian matrices by unitary matrices. The orbits of this action are just the {Oλ}

we were studying in the first lecture.

We already know how to list the orbits of U(n) on Hermitian matrices: there is exactly
one for each weakly decreasing list λ of real numbers. More specifically, any Hermitian
matrix can be diagonalized, then put in decreasing order, and the result is unique. It turns
out there is a similar result for any compact connected Lie group; any element of g∗ can
be conjugated into t∗, and then uniquely into the “positive Weyl chamber”, a polyhedral
cone. We will only need this result for G a product of unitary groups.

3.2. Projections of coadjoint orbits. Now let H be a compact, connected subgroup of G.
Then h ≤ g, so we get a linear projection g∗

։ h∗. Given a G-coadjoint orbit Oλ ⊆ g∗, its
projection to h∗ will be H-invariant, so a union of H-coadjoint orbits.

(1) Which ones are in the image?
(2) What is the induced measure on the image?

Example: G = U(n), H = U(1)n, the diagonal unitary matrices. Then the map g∗ → h∗

becomes, under the identification with Hermitians, the map diag from the first lecture.
So the first question becomes the Schur-Horn problem, and the second is answered by the
Gel ′fand-Cetlin technology.

Example: G = U(n) × U(n), H = U(n) sitting inside diagonally {(U1, U2) : U1 = U2}.
Then the map g∗ → h∗ is the map (Hλ, Hµ) 7→ Hλ + Hµ. So the first question becomes
Weyl’s problem (as first answered by Klyachko), and the second question is answered by
the Johnson/Berenstein-Zelevinsky technology.

Example: G = U(mn), H = U(m) × U(n).8 Then the map u(mn)
∗ → u(m)

∗ ⊕ u(n)
∗

takes a state of Alice+Bob to the pair (state of Alice, state of Bob), by tracing over the two
components, the quantummarginals. No useful answer is known to the second question.

With modern technology (the Guillemin-Sternberg-Kirwan convexity theorem), it is
easy to prove that the first question always has a polyhedral answer. In general, the
second question (about measures) is easy to answer as an alternating sum, which makes
it very hard to determine its support. The first question received a general answer by
Berenstein and Sjamaar, following Klyachko’s lead, and I will describe it below.

3.3. Relative Schubert calculus. There is another problemwhose input is a pair (G ≥ H)
of Lie groups.

8Technically, there is only a map H → G, not an inclusion, but that’s good enough. It just says that the
map g∗ → h∗ is not onto, which we didn’t use for anything.
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We saw already that for G = U(n), the coadjoint orbits of G have a Bruhat decompo-
sition, defined using gradient flow. There is an analogous decomposition for the coad-
joint orbits of any compact Lie group. Separately, one can prove that each smallest-
dimensional orbit of H on a coadjoint orbit O1 of G is itself naturally isomorphic to some
coadjoint orbit O2 of H.

(1) For which pairs (O1)π, (O2)ρ of Schubert varieties in these two coadjoint orbits, is
a generic translate g · (O1)π ∩ h · (O2)ρ nonempty?

(2) Kleiman’s theorem lets one figure out the dimension of the intersection. When it
is 0-dimensional, how many elements does it have?

As before, the second question has a solution that is not obviously positive, and hence
is of limited use in answering the first. We’ll discuss this in the next lecture. The first
was given some very nice necessary conditions and (separately) sufficient conditions by
Purbhoo.

Theorem (Berenstein-Sjamaar 1998). If one can solve (a slight generalization of) the first ques-
tion, then one can give a complete (albeit redundant) list of the linear inequalities determining the
image of Oλ ⊆ g∗ projected to h∗.

With this, one can e.g. recover the Schur-Horn result and Klyachko’s 1993 results (concerning
spectra of sums).

Klyachko (2004) applied their results to the quantum marginal problem, giving a com-
plete (but complicated) list of inequalities. Ressayre (2007) gave an improved version of
Berenstein-Sjamaar that automatically computes theminimal list of inequalities. Guillemin
and Sjamaar (2005; section 3.8) have given a Hersch-Zwahlen-style proof of the general
Berenstein-Sjamaar theorem, so the proof in theorem 1 is not much of a surprise.

In the quantum marginals problem, we still have a question: for which quadruples
I, J, K, L of Schubert conditions is there a unique pair of subspaces (W, V) satisfying those
conditions?

4. LECTURE 4: SCHUBERT POLYNOMIALS, HECKMAN’S THESIS

4.1. The barest minimum on cohomology rings. Algebraic topology is about studying
continuous maps of topological spaces using algebra, i.e. integers, or elements of more
general groups and rings. Since it’s hard for an integer to vary continuously, algebraic
topology is mostly concerned with properties of continuous maps that don’t vary under
deformation; a good example is the winding number of a function f : S1 → S1 (where S1

denotes the circle.

Schubert’s calculational techniques were not rigorous in his day, and one of Hilbert’s
problems was to make them so. That was answered by the development of cohomology
rings of spaces. Every topological space X has an associated cohomology ring H∗(X), and
every continuous map f : X → Y has an associated map f∗ : H∗(Y) → H∗(X). (The “co” is
because this map is backwards.)

H∗(X) can be a horribly complicated commutative ring, but things are very nice if X

has a decomposition into even-real-dimensional vector spaces (think the Bruhat decom-
position); then H∗(X) is a vector space with a natural basis indexed by the pieces in the
decomposition. If X = Oλ then these are called the Schubert classes in H∗(X).
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Just to keep the threads together, I’ll restate the input to the Berenstein-Sjamaar/Ressayre
theorems. LetOλ→ Oµ is an inclusion ofH’s coadjoint orbit intoG’s, and let Sπ be a Schu-
bert class in H∗(Oµ). Then its image (backwards) in H∗(Oλ) is some linear combination of
Schubert classes in H∗(Oλ). What are the coefficients? This is what I’ll call the Schubert
restriction problem hereafter.

Note that any space X has a diagonal inclusion X→ X×X, so there’s a map H∗(X×X)→
H∗(X). This is eventually the source of the multiplicative structure on H∗(X), and why
people prefer cohomology to homology (since they prefer multiplication to comultiplica-
tion). It means also that in Horn’s problem, one is interested in the coefficients of multi-
plication on H∗(Grk(C

n)), which is solved by puzzles and many other things.

4.2. Cohomology rings of flagmanifolds. Borel’s theorem gives a presentation ofH∗(Oλ)
when λ is generic; it is the ring of polynomial functions on t, moduloWeyl-group-symmetric
polynomials. In the U(n) case it comes to

H∗(Oλ) ∼= Z[x1, . . . , xn]/〈symmetric polynomials with no constant coefficient〉

e.g. in the U(3) case, H∗(Oλ) ∼= Z[x1, x2, x3]/〈x1 + x2 + x3, x1x2 + x1x3 + x2x3, x1x2x3〉.

In geometric terms, recall that Oλ is the manifold of full flags (0 < W1 < W2 < . . . <

Wn = C
n), and if λ ′ is not generic, then Oλ′ is a manifold of partial flags, skipping some

subspaces. In particular there is a forgetful map Oλ ։ Oλ′ , which happens to induce an
inclusion

H∗(Oλ′)→֒H∗(Oλ) ∼= Z[x1, . . . , xn]/〈symmetrics w/o constant coefficient〉

whose image is generated by polynomials that are symmetric in two variables if the cor-
responding elements of λ ′ coincide.

In the quantum marginals case, the map U(m) × U(n)→ U(mn) induces the maps

Tm × Tn→ Tmn, (D, E) 7→ D⊗E

tm ⊕ tn→ tmn (D, E) 7→ (D⊗1n) + (1m⊗E)

(tm)∗ ⊕ (tn)∗ ←− (tmn)∗, zij 7→ xi + yj

which plugged into Borel’s theorem, gives

Z[z11, . . . , zmn]/〈sym〉→ Z[x1, . . . , xm]/〈sym〉⊗Z[y1, . . . , xn]/〈sym〉, zij 7→ xi + yj.

4.3. Schubert polynomials. Borel’s presentation doesn’t help one answer the Schubert
restriction problem, because Borel doesn’t tell you where to find the Schubert classes in-
side his presentation. Note that it’s kind of annoying to specify an element of a quotient
ring; it would be nice if each Schubert class had an actual polynomial associated, even
though it doesn’t look natural to privilege one choice over another.

In fact there is a natural choice, found by Lascoux and Schützenberger in 1982, called
Schubert polynomials. I won’t explain the multiple reasons why their choice is natural
(though see [KnMil05]), but I will give a nice formula for them.

Define a pipe dream as a tiling of the fourth quadrant by two kinds of tiles: crosses
and elbows. There are two conditions; there should be only finitely many crosses, and no
two pipes should cross twice. To a pipe dream P whose last cross occurs before the nth
antidiagonal, one can associate a permutation perm(P) of {1, . . . , n}: write the numbers
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down the left column, and convey them along the pipes to the top. Then read off the
numbers.

To P we also associate a monomial
∏

+∈P xrow ∈ Z[x1, . . . , xn]. Then the formula (very
far from Lascoux and Schützenberger’s definition) is

Sπ =
∑

P: perm(P)=π

∏

+∈P

xrow.

(Note that if perm(P) only moves the numbers up to n, then it is easy to see that P has no
crosses after the nth antidiagonal, so this sum is finite.) For example, 132 has two pipe
dreams, and S132 = x1+x2. The papers [BB, KnMil05] give ways of producing all the pipe
dreams for a given permutation.

Theorem. If π(i) < π(i + 1), i.e. π has an ascent at i, then Sπ is symmetric in xi, xi+1. (And
only if.)

In particular, the last variables xd occurring in Sπ is for d the largest descent of π.

If π has only one descent, after the kth place, then Sπ is the Schur polynomial Schurλ in k

variables associated to the partition λ whose ith smallest row has π(i)− i boxes. This arises also as
the character of the irreducible representation Vλ of U(k) (and in the representation theory of the
symmetric group, and elsewhere); the pipe dreams can be easily corresponded with semistandard
Young tableaux in this case.

4.4. Heckman’s thesis, and representation theory as a “quantum version” of coadjoint
orbits. The possible spectra of Hermitian matrices correspond uniquely to weakly de-
creasing lists of real numbers. The irreducible representations of U(n) correspond to
weakly decreasing lists of integers.9 In this and many other senses, one should think of
irreducible representations as the “quantum analogues” of coadjoint orbits.

To see a little of this, consider the “fundamental cases” where λ = (1k, 0n−k). Then the
corresponding coadjoint orbit is the Grassmannian of k-planes (or rather, rank k projec-
tions), and the corresponding irrep is Altk

C
n. These are famously related by the Plücker

embedding Grk(C
n) → P(Altk

C
n), W 7→ AltkW. (In coordinates, we pick a basis of W

and wedge it together.)

More generally, we can construct the irrep Vλ by looking in the very big representation

V⊗(λ1−λ2)⊗(Alt2V)⊗(λ2−λ3)⊗ · · ·⊗(AltnV)⊗(λn−0)

taking the U(n)-orbit of the high weight vector, and either projectivizing it (to get the
coadjoint orbit) or taking its linear span (to get the irrep).

G. Heckman’s thesis included the following:

Theorem. (Heckman 1980?) Let G ≥ H be a pair of Lie groups, and λ, µ dominant weights of
them.

(1) Let f
µ
λ(n) = the multiplicity of Vnµ in the restriction of Vnλ from G to H.

(2) LetMµ
λ be the preimage under the linear projection g∗ → h∗ of Oµ in Oλ, divided by H.

9It is frequently asserted that they correspond to partitions of height at most n, i.e. weakly decreasing
lists of naturals. Those are the ones that extend continuously to noninvertible matrices, leaving out e.g.
the representation U 7→ det(U)−1. Any one of these more general representations can be tensored with
U 7→ det(U)N for some large N in order to fall into this smaller set, which is why people get away with this.
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Then for sufficiently divisible n, fµ
λ(n) is a polynomial, whose leading term cnd has

d = dimMµ
λ, c = vol Mµ

λ.

The subleading terms in f
µ
λ can be read from subtler invariants of the space Mµ

λ.

Corollary. • If Vµ appears in Vλ, then this M is nonempty.
• If this M is nonempty, then VNµ appears in VNλ for some large N.

Using the Borel-Weil construction of irreps (not described here), it is easy to prove that
the set of pairs {(λ, µ) : Vµ appears in Vλ} is closed under addition and finitely generated.
Using the Corollary, this implies that the set of pairs {(λ, µ) : Mµ

λ 6= ∅} is a convex polyhe-
dral cone. This is my favorite way of seeing that these H ≤ G problems have polyhedral
answers (one also has the “Kirwan convexity theorem” that doesn’t use the representation
theory side).

In good cases one can dispense with the N in the second statement; this phenomenon
is called saturation. It holds for the pair T → U(n) and for the pair U(m)→ U(m)×U(m)
(which I proved with Tao), but not for U(m) × U(n)→ U(mn).

Note that this coefficient c, considered as a function of µ, is the probability density
we were asking about in lecture 1 (unless d drops from its maximum, in which case the
probability density is 0). So the very best thing to compute is the function f. This can be
done in the T ≤ U(n) and U(n) ≤ U(n)×U(n) cases by counting integral Gel ′fand-Cetlin
or Berenstein-Zelevinsky patterns.

4.5. The state of knowledge of the Schur-Horn, Hermitian sum, and quantummarginal
problems. In the case T ≤ U(n), we know not only the ∼ 2n Schur-Horn inequalities but

the Gel ′fand-Cetlin cone. This cone has only 2
(

n+1

2

)

facets; it is in this sense much simpler
than its projection. It is easy to list its edges; they correspond to G-C patterns of 1s and 0s,
with the dividing line given by some path from bottom to top. There are 2n − 1 such (the
all-0 case doesn’t give an edge); on the representation theory side, they correspond to the
basis vectors in all the fundamental representations {Altk

C
n}.

In the cse U(n) ≤ U(n) × U(n), we know not only the Klyachko inequalities but the

Berenstein-Zelevinsky cone. This cone has only 2
(

n+1

2

)

facets; it is in this sense much
simpler than its projection. It is not easy to list its edges. Moreover, it is not easy in
general to locate the corresponding copy of Vν inside Vλ⊗Vµ.

In the case U(m) × U(n) → U(mn), all we have are the Berenstein-Sjamaar-Ressayre
inequalities, as elucidated by Klyachko. It would be much nicer to have a polyhedral way
to compute the Kronecker coefficients.
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